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By numerically solving the equations of motion for atomic spins we show that internal spin-wave processes
in large enough magnetic particles, initially in unstable states, lead to complete magnetization reversal and
thermalization. The particle’s magnetization m strongly decreases in the middle of reversal and then recovers.
The closer is the initial orientation of m to the energy minimum, the slower is the relaxation toward it and the
smaller is the decrease in m in the course of relaxation. We identify two main scenarios, exponential and linear
spin-wave instabilities. For the latter, the longitudinal and transverse relaxation rates have been obtained
analytically. Orientation dependence of these rates leads to a nonexponential relaxation of the particle’s mag-
netization at long times.
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I. INTRODUCTION

From both fundamental and application viewpoints, the
switching time required for the magnetization reversal has
become of utmost significance today. The tremendous in-
crease in storage density and read-write speed in magnetic
storage media is reaching its limits and the need for further
speedup of the magnetization dynamics is one of the main
issues. Actual read-write processes operate on the order of
nanoseconds and newly developed methods such as preces-
sional switching1 have demonstrated the possibility to reach
subnanosecond time scales. Recent pump-probe experiments
have also shown a fast decay of the magneto-optical signal
occurring on the subpicosecond time scale using time-
resolved techniques such as, to cite a few, the magneto-
optical Kerr effect,2 time-resolved second-harmonic
generation,3 and pulsed inductive microwave magnetometer.4

These techniques also make it possible to prepare the sys-
tem in a nonequilibrium state with the magnetization vector
pointing in a freely chosen arbitrary direction. In particular,
unlike linear ferromagnetic resonance �FMR� experiments,
large-angle motion of the magnetization can be studied. This
is relevant to technological applications since magnetic re-
cording heads are expected to change magnetization direc-
tions over large angles at ever increasing frequencies. An-
other advantage of these techniques is that they are sensitive
to spin wave and damping phenomena.5–7

In this paper we will study the relaxational switching of
the magnetization initially put in a state far from equilibrium,
as it is possible to do with the methods mentioned above. In
general, relaxation is accompanied by a change in the energy
of the relaxing system and the energy released or absorbed
has to be accommodated by a larger system serving as a heat
bath. In particular, magnetization reversal of �quasisingle do-
main� magnetic particles toward equilibrium reduces their
Zeeman and/or anisotropy energy and the role of heat bath
can be played by phonons and/or conduction electrons, etc.
Most of the existing theories consider magnetic particles as
single macroscopic magnetic moments whose dynamics is

described by the Landau-Lifshitz equation with damping8

and Langevin noise field �see, e.g., Refs. 9–11� or the corre-
sponding Fokker-Planck equation.

As was pointed out by Suhl12 and demonstrated by
Safonov and Bertram,13,14 internal spin-wave �SW� modes in
the particle can serve as a heat bath and thus be responsible
for the particle’s relaxation far from equilibrium and thereby
for magnetization switching. As a rule, this internal relax-
ation process should be much faster than those processes that
operate via nonmagnetic degrees of freedom with important
implications in engineering of magnetic elements in electron-
ics. Progress in computing has made it possible to simulate
the dynamics of magnetic particles as systems of many inter-
acting spins,13,14 considered classically. Simulations show
that relaxation via internal SW indeed occurs.

From the theoretical viewpoint, SW dynamics in a mag-
netic particle whose global magnetization strongly depends
on time in the course of reversal is a new and challenging
subject. Dynamics involving moderate deviations in the par-
ticle’s magnetization from equilibrium, including the Suhl
SW instabilities15 that may lead to a much faster
relaxation,7,12,16 can still be described with the help of a non-
linear SW theory built around the ground state. To the con-
trast, large deviations require redefinition of the spin-wave
vacuum by considering SW dynamics in the frame related
to the instantaneous particle’s global magnetization. The
vacuum corresponding to a collinear state with all particle’s
spins oriented in an arbitrary direction is an example of a
false vacuum that is unstable and decays toward the true
vacuum. A spin-wave vacuum of this kind was suggested for
the thermodynamics of low-dimensional magnetic systems in
zero field that have a zero order parameter at T�0.17 Its
extension to nonzero field was done in Ref. 18. Recently,
the initial stages of SW dynamics including instabilities
have been considered in the global-magnetization frame in
Ref. 19.

The false-vacuum initial condition can be created by bi-
asing the system with a magnetic field that leads to the dis-
appearance of the metastable energy minimum in which the
magnetization is set.13 Other methods are the precessional20
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and current-induced21 switching that allow to rotate the mag-
netization into an arbitrary direction during the time that is
shorter than the relaxation time.

The aim of this paper, which is the extended version of
the preceding letter,22 is twofold: �i� We show by numerical
simulations for atomic spins on the lattice at initially T=0
that, for particles large enough, excitation of internal spin
waves leads to a full magnetization switching and relaxation
to a thermal state with the temperature T defined from the
energy balance. This solves the puzzle of “incomplete relax-
ation” observed in Ref. 13 for a particle of only 64 effective
spins. We show that magnetization switching via internal
spin waves is typically accompanied by a strong reduction in
the particle’s magnetization m that subsequently recovers to
a value that is slightly less than the initial value m=1 for
collinear spins. This longitudinal relaxation is similar to that
described by the Landau-Lifshitz-Bloch �LLB� equation
�see, e.g., Refs. 10 and 11�, although it has a different origin.
�ii� In addition to the exponential instability mechanism
that occurs in the case of elliptic magnetization
precession,12,13,15,16,19 there occurs a linear instability mecha-
nism for the circular magnetization precession. The latter
may be driven by a random core �volume� anisotropy or by a
surface anisotropy that causes spin noncollinearities. We ana-
lytically derive the rates describing the creation of SWs out
of the false vacuum, using the spin-wave theory in the frame
of the particle’s global magnetization m. Essential depen-
dence of these rates on the angle between m and the mag-
netic field H, which shapes the energy landscape, leads to a
slow nonexponential relaxation of m at large times.

The remainder of the paper is organized as follows. Sec-
tion II introduces the classical-spin model of a magnetic par-
ticle including a bulk anisotropy and a random anisotropy.
Here the existence of two types of SW instabilities is dem-
onstrated. Section III contains the formalism of spin-wave
theory in the frame related to particle’s global magnetization.
The details of the full analytical solution in the case of ran-
dom anisotropy are given in the Appendix. In Sec. IV the
results of numerical atomistic simulations are presented that
show the two instability scenarios leading to the magnetiza-
tion reversal. Section V contains discussion.

II. HAMILTONIAN AND SPIN-WAVE INSTABILITIES

A. Hamiltonian

We consider the classical Hamiltonian ��si�=1� on the lat-
tice

H = �
i

HAi − h · �
i

si −
1

2�
ij

Jijsi · s j , �1�

where h=�0H, �0 is the magnetic moment associated with
the spin, H is the magnetic field, Jij is the exchange interac-
tion, and HAi is the crystal-field energy at site i, a function of
si satisfying the symmetry of the problem. In applications
below, we will consider the bulk uniaxial anisotropy with
easy axis ez

HAi = − D�ez · si�2, D � 0 �2�

and the random anisotropy

HAi = − �
��

gi,��si�si� �3�

with

gi,�� = DR�ui�ui� −
1

3
����, DR � 0 �4�

ui being a unit vector assuming random directions.23,24 One
can also add a surface anisotropy and dipole-dipole interac-
tion. Throughout the paper we do not include any coupling to
the environment.

The particle’s magnetization is defined as

m =
1

N�
i

si, �5�

where N is the total number of spins.
Atomic spins obey the Larmor equation

ṡi = �si � �i�, ��i = − �H/�si. �6�

B. Spin-wave instabilities

We now study two models, one with uniaxial anisotropy
with the same easy axis for all spins and no random aniso-
tropy �DR=0�, and the other with random anisotropy and no
uniaxial anisotropy �D=0�. We will show that in the case of
uniaxial anisotropy the SW instabilities are exponential
while in the case of random anisotropy these instabilities are
linear. The calculations are both analytical and numerical in
the latter case and only numerical in the former.

1. Uniaxial anisotropy and exponential instabilities

The first model we study is that of uniaxial anisotropy
with the common easy axis in the z direction, noncollinear
with the applied field h. In this case, the spin precession is
noncircular. The same effect may also be caused by a biaxial
anisotropy. We choose the initial state si=ex and h=hex. Lin-
earization around this state yields the SW spectrum

	k = 	�h + J0 − Jk��h − 2D + J0 − Jk� , �7�

where Jk is the Fourier coefficient of Jij which, for a particle
with simple-cubic �sc� structure, reads

Jk = 2J�
�

cos�ak�� , �8�

where a is the lattice spacing. In the long-wavelength limit
J0−Jk
J�ak�2.

Let us now consider the properties of Eq. �7� in different
regions of the magnetic field h. �i� For h�2D the state
si=ex is the energy minimum and thus 	k is real. This means
that there are no SW instabilities and the initially excited SW
will maintain their amplitudes. �ii� In the interval
0
h
2D the state si=ex is a saddle point, so that m can
rotate away from this state, similarly to the case studied
in Ref. 13 �cf. Fig. 1�. SW modes in the interval
0
J0−Jk
2D−h are unstable since 	k becomes
imaginary.19 This leads to the exponential increase in the
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deviations from the initial nearly collinear state. The highest
instability increment is realized in the middle of the k inter-
val of instability, i.e., J0−Jk=D−h /2. This means that expo-
nentially growing spin waves with this nonzero value of k
dominate in the instability process. As a result, the magneti-
zation length m��m� decreases upon rotation out of the
saddle point, as was observed in early simulations.13 �iii� For
h
0 the state si=ex is the energy maximum and thus m
performs small-amplitude precession around ex in the ab-
sence of SW processes. Indeed, according to Eq. �7�, the
mode k=0 is stable as 	0 is real. On the other hand, k�0
modes in the interval

− h 
 J0 − Jk 
 2D − h �9�

are unstable. In this case the only way of reversal is via
excitation of internal spin waves with k�0 that strongly
reduce the magnetization magnitude m �see Figs. 2 and 3�.

2. Random anisotropy and linear instabilities

The second situation we consider here is D=0 and non-
zero random anisotropy of Eq. �3�. The latter does not break
the global particle’s magnetic isotropy and its only role is to
provide strength for SW conversion processes that lead to
nonconservation of m ·h and thus to reversal. We choose
h=hez with h�0. Here the precession of m is circular and
there are no exponential SW instabilities. Instead, spin waves
may be generated out of a false vacuum by linear transfor-
mation processes. In particular, for m antiparallel to h, spin
waves in the particle have a negative gap −h. Thus a SW
with k�0 can be created out of the false vacuum if its
energy is zero:

	k = − h + J0 − Jk = 0. �10�

In Sec. III and the Appendix this process will be considered
in detail for any angle between m and h. The amplitudes of

unstable SW and the deviation of m from saturation increase
linearly with time at small times �see Fig. 4�.

3. Size effects

In the analysis of both exponential and linear SW insta-
bilities one has to take into account the fact that because of
the finite size of magnetic particles their internal SW modes
are discrete. In particular, for a box-shaped particle with free
boundary conditions �fbc� there are standing spin waves with
wave vectors18

k� =
�n�

aN�

, n� = 0,1, . . . ,N� − 1, � = x,y,z , �11�

where a is the lattice spacing and NxNyNz=N is the total
number of spins. For most of other shapes, SW modes in
magnetic particles have to be found numerically and they are
labeled by discrete wave numbers rather than by the wave
vector k. In the sequel, in the analytical calculations, we will
consider only the box-shaped particles for simplicity.
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FIG. 1. �Color online� Magnetization switching out of the dis-
appearing metastable state via exponential spin-wave instability in a
particle of a box shape with uniaxial anisotropy and oblique mag-
netic field.
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FIG. 2. �Color online� Magnetization switching out of the
maximal-energy state via exponential spin-wave instability in a
spherical particle with uniaxial anisotropy and transverse field.
Switching occurs via longitudinal relaxation without rotation. �b�
shows the short-time magnification. The “Plateau” at t�2000 de-
scribes the initial exponential increase in 1−m.
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One can see that for the linear instability process, Eq. �10�
may be satisfied for a particular SW mode. For particles
small enough, the lowest value of J0−Jk for k�0 �i.e., for
n�=1 in Eq. �11�� exceeds h and thus SWs cannot be created.
This yields the absolute stability criterion for the particle’s
linear size L

L 
 L� = aN� = �a	J/h �12�

assuming a cubic shape. If there is only one mode that ex-
actly or approximately satisfies Eq. �10� and this mode does
not decay into second-generation SW, there are harmonic
oscillations between the false-vacuum state and the state
with the resonant SW mode: 1−m�cos�
t�, where 
 de-
pends on the strength of the SW conversion processes, i.e.,
on the random anisotropy or other interactions creating spin
noncollinearity. These oscillations are similar to the probabil-
ity oscillations between two resonant states in quantum

mechanics. If the unstable spin-wave mode can be converted
into a second-generation spin-wave mode that also has its
energy close to zero, the relaxation process becomes at least
a two-step process. Conversion into second-generation spin
waves already can lead to complete relaxation, as shown by
the example in Sec. IV B. For small enough particles, but
with L�L�, there are not enough resonant SW modes, so
that the relaxation process gets stuck in what can be called
“spin-wave bottleneck” and the relaxation is incomplete, as
was observed in Ref. 13. In large particles, L�L�, the spec-
trum of SW modes become quasicontinuous, the SW bottle-
neck disappears, and a cascade of SW processes leads to a
nearly full magnetization reversal, as is demonstrated below.

Analysis of the exponential instability in magnetic par-
ticles of finite size goes along similar lines. The particle is
stable if the smallest value of J0−Jk with k�0 �i.e., n�=1�
exceeds the right boundary of the instability interval, i.e.,
2D−h, see Eq. �9�. This leads to the stability criterion
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FIG. 3. �Color online� Magnetization switching via exponential
spin-wave instability in a box-shaped particle with uniaxial aniso-
tropy and transverse field. �a� The particle is prepared with all spins
opposite to the magnetic field �the maximal-energy state�. Again the
longitudinal relaxation is the main mechanism of switching. �b� The
particle is prepared with all spins perpendicular to the magnetic
field.
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FIG. 4. �Color online� Magnetization switching via linear spin-
wave instability in a particle with random anisotropy. �a� Particle
prepared with all spins antiparallel to the magnetic field. The
small-t asymptote of Eq. �41� is shown by the dashed line. For this
initial condition, switching occurs predominantly via changing the
magnetization length m. �b� Particle prepared with all spins perpen-
dicular to the magnetic field.
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L 
 L� = aN� = �a	 J

2D + �h�
�13�

for the particle’s size L=max�Lx ,Ly ,Lz�. Equation �13� is
similar to the single-domain criterion since its right-hand
side �rhs� is the domain-wall width, if h=0. If L�L� and
there is only one SW mode inside the instability interval that
does not convert into second-generation spin waves, its am-
plitude and thus the magnetization length m depends periodi-
cally on time. This dependence is not sinusoidal, as that for
the linear instability, see comment below Eq. �12�. Instead,
the SW amplitude initially exponentially increases but then
this evolution becomes inverted due to nonlinear effects at
large amplitudes and the SW amplitude reversibly returns to
the starting small value. After that the process repeats peri-
odically. If second-generation unstable spin waves are cre-
ated, the time evolution of m becomes more complicated and
m does not return to saturation. Still, for L�L� the magne-
tization reversal is incomplete, as observed in Ref. 13. Only
for large enough particles, L�L�, does relaxation via inter-
nal spin waves lead to a complete magnetization reversal.

Finally, we address the question as to how large the par-
ticle must be so that its spectrum of spin waves becomes
effectively continuous. In the case of the exponential insta-
bility, the criterion is that there must be several modes within
the instability interval whose length �in energy� is propor-
tional to D, as we have seen above �see Eq. �9��. Thus the
criterion of the quasicontinuous spectrum becomes

�	 � D , �14�

where �	 is the average distance between the SW modes. In
the case of random anisotropy, the spin-wave deviations, as-
sociated with a particular mode, satisfy linear differential
equations with a source that is proportional to the random-
anisotropy constant DR, see, e.g., Eq. �A23�. The response to
the off-resonance source is of order DR /�	 that becomes
large for �	�DR, formally coinciding with Eq. �14�. If this
condition is fulfilled, spin waves are effectively generated for
all values of the field h without the necessity to satisfy Eq.
�10�. Next, �	 can be expressed via the density of SW states,
defined by Eq. �A25�, as

�	 =
�

N����
�15�

in the vicinity of the energy 	=��. Thus Eq. �14� can be
rewritten in terms of the particle’s size as

N �
�

����D
. �16�

Using ���� of Eq. �A27� with 	�D for the model with
uniaxial anisotropy, one obtains the criterion of the quasicon-
tinuous spectrum in the form

N � �2��2�J/D�3/2. �17�

For the model with random anisotropy one uses 	�h to
obtain the criterion

N � �2��2�J/DR�	J/h . �18�

For metallic Co one has D=0.0024J so that Eq. �17� yields
N�336000.

III. ANALYTICAL THEORY OF SPIN-WAVE
INSTABILITIES IN THE PARTICLE FRAME

In this section, we present our general formalism of SW
theory in the frame related with the particle’s global magne-
tization for an arbitrary direction of the applied field. Then,
we study the two anisotropy models of Secs. II B 1 and
II B 2 and the ensuing SW instabilities.

The microscopic effective field ��i in Eq. �6� can be
written in the form

��i = h −
�HAi

�si
+ 2gJisi + �

j

Jijs j , �19�

where HAi contains only nonrandom anisotropy, whereas the
random anisotropy is singled out in the third term. In particu-

lar, for HAi given by Eq. �2� one has −�HAi /�si=DJsi�DJ ·si

and the components of the tensor DJ read �DJ���=D��z��z.
Similarly, the components of the random-anisotropy tensor
are given by �giJ���=gi,�� and Eq. �4�. One can represent si in
the form

si = m + �i, �
i

�i = 0, �20�

where m is the average spin defined by Eq. �5� and �i con-
tains the Fourier components with k�0 and describes spin
waves in the particle. Whereas in the standard SW theory m
is a constant corresponding to the ground-state orientation,
here it is treated as a time-dependent variable. Since the
atomic spins are subject to the chiral constraint si

2=1, one
can use19 m=n	1−�i

2 with n ·�i=0, where n is a unit vec-
tor. Although this reduces to two the number of the �i com-
ponents to deal with, the formalism becomes much more
cumbersome. The final results, however, are not affected.
Thus we decided not to use the chiral constraint explicitly in
our presentation. Of course, properly written equations must
satisfy this constraint that can be used to check them.

The equation of motion for m following from Eq. �6� has
the form

�ṁ = �m � heff� + R . �21�

Here

heff � h − 
 �HAi

�si



si⇒m
�22�

is the effective field acting on the particle as a whole and
does not contain the random anisotropy and exchange cou-
pling. The term R couples the dynamics of m to that of spin
waves described by �i and it is responsible for the relaxation
of m. Calculation yields
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R =
1

N�
i

��m � 2gJi�i� + ��i � �FJ�i + 2gJi�m + �i���� .

�23�

Here �i�m�2gJim�=0 as an average of the random aniso-
tropy, �ijJij��i�� j�=0 by symmetry, while some other

terms vanish by virtue of Eq. �20�. The tensor FJ is given by

�FJ��� = − 
 �2HAi

�si� � si�



si⇒m
�24�

For HAi given by Eq. �2� one has �FJ���=2�DJ���=2D��z��z.
In turn, the equation of motion for �i can be obtained as

�̇i = ṡi − ṁ = �si � �i� − ṁ . �25�

Working out the various terms yields

��̇i = �m � 2gJim� + Ai
�1� + Ai

�2�, �26�

where Ai
�1� contains terms linear in �i and none in gJj, while

Ai
�2� contains the terms of order �2 and �g. In the sequel we

will keep only Ai
�1� that is responsible for the generation of

spin waves out of a false vacuum, whereas Ai
�2� responsible

for nonlinear spin-wave processes will be dropped. One has

Ai
�1� = ��i � �heff + J0m�� + �m � �FJ�i + �

j

Jij� j�� .

�27�

The first term in Eq. �26� that causes noncollinearity of
spins, is responsible for the linear SW instability. The same
effect is produced by surface anisotropy and dipole-dipole
interaction.

In Eq. �21� it is convenient to project the relaxation term
R onto m and the perpendicular directions. For this we in-
troduce orthogonal unit vectors

n =
m

m
,

e1 =
�n � heff�
��n � heff��

=
�n � heff�
heff

	1 − x2
,

e2 = �n � e1� =
�n � �n � heff��

��n � heff��
, �28�

where

x �
n · heff

heff
=

m · heff

mheff
. �29�

R then has the form

R = R�n + R1e1 + R2e2, �30�

where R� describes the longitudinal relaxation of the parti-
cle’s magnetization �change in the magnetization magnitude�
while

R2 � R� �31�

describes the transverse relaxation �rotational relaxation of
the magnetization vector�, since e2 ·n=0. On the contrary, R1
does not describe any relaxation. It merely describes a small
modification of the particle’s precession due to excitation of
spin waves, an effect that will be neglected here. Explicitly
Eq. �21� can now be rewritten as

�ṁ = �m � heff� + R�

m

m
+ R�

�m � �m � heff��
m��m � heff��

, �32�

where

R� = n · R, R� = e2 · R . �33�

Equation �32� resembles the Landau-Lifshitz-Bloch equation
since it includes both the longitudinal and transverse relax-
ation terms. Ignoring Ai

�2� in Eq. �26�, one can solve the
resulting linear equation for �i, insert the solution into R,
and obtain the relaxation terms in Eq. �32� from Eq. �33�.
Integrating out �i can be done in the particle’s frame defined
by Eq. �28�. It is understood that Eq. �32� is only valid during
the initial stage of the evolution out of the completely or
nearly collinear state, �m�
1, when the deviations �i due to
spin waves are small and can be considered perturbatively.

A. Linear instabilities

Equation �26� without the contribution Ai
�2� can be solved

analytically in the case of a pure random anisotropy,
HAi=0 since then the time dependence of the frame vectors
is a simple precession around the external field h. The details
can be found in the Appendix. For D=0 the dependence m�t�
�neglecting R in Eq. �21�� is a circular precession and thus
the calculations simplify and lead to the equation of motion

ṁ =
1

�
�m � h� − m3/2���x�

m

m
− m3/2���x�

�m � �m � h��
m2h

.

�34�

Here the transverse and longitudinal relaxation rates depend
on the orientation of the particle’s magnetization vector x
��m ·h� / �mh�

���x� =
2

15��

DR
2

J
	h

J
���x� � ��0���x� , �35�

���x� =
1

5��

DR
2

J
	h

J
���x� � ��0���x� �36�

with

���x� =
�1 − x�2

4
��1 + 2x�2 + 	2�1 − x2�� , �37�

���x� =
1 − x

6
��1 + 2x�2 + 	2�1 − x��2 + x�� . �38�

The applicability of our method requires ��, �� ��H=h /�,
i.e., the relaxation of the magnetization �as well as the rate of
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SW production� is much slower than the magnetization pre-
cession considered as unperturbed in the first approximation
above.

We note that Eq. �34� is similar to the LLB equation.10,11

However, it is valid, in general, only for short times, when
the number of excited spin waves is still small and m
1, so
that neglecting Ai

�2� in Eq. �26� is justified. Correspondingly,
m in Eq. �34� may be replaced by 1. Of more consequence,
however, is to introduce the magnetization direction n and
write m=nm. Then Eq. �34� can be split into the following
two equations

ṅ =
1

�
�n � h� − ���x�

�n � �n � h��
h

, �39�

where x�n ·h /h and

ṁ = − ���x� . �40�

The small-t behavior

mz�t� = 1 − ���− 1�t �41�

follows from Eq. �40� and is shown in Fig. 4�a�. It agrees
well with the numerical result with a small discrepancy stem-
ming from h /J not being small enough to use the analytical
expression for the density of states given by Eq. �A27�.
Equation �40� does not describe the increase in m after
switching and its recovery to m
1 that is seen in Fig. 4�a�.

A striking feature of our result is that both ���x� and
���x� vanish for m �h �i.e., for x=1� while they reach their
maxima at x=−1. Thus, initially fast relaxation slows down
when the particle approaches equilibrium, see Fig. 4. Indeed,
Eq. �39� can be rewritten as

ẋ = ���x��1 − x2� . �42�

In terms of the angular deviation from equilibrium we have

y � 1 − n · h/h � 1 − x � 1 �43�

upon which Eq. �42� simplifies into the equation
ẏ=−3��0y2 whose solution reads

y�t� =
y�0�

1 + 3y�0���0t
. �44�

It is seen that the long-time asymptote of this solution
does not depend on the initial condition y�0� and is given by
y�t�=1 / �3��0t�. The full magnetization vector m=nm in-
cludes m that follows from Eq. �40�. The latter becomes
ṁ=−�9 /4���0y2=−�3 /2���0y2= ẏ /2. This yields

1 − m�t� =
1

2
�y�0� − y�t�� . �45�

Thus, we see that the deviation 1−m�t� remains finite and
small for t→� since y�t�→1 / �3��0t� that is the conse-
quence of the relaxation slowing down as m approaches
equilibrium. The change in m due to its rotation and due to
the change in its magnitude are comparable with each other.
In addition, one has to remember that the equation of motion
for m was obtained for the initial stage of relaxation only
and, in particular, Eq. �40� does not describe thermalization.

Still the evidence provided by these analytical calculations of
the nonexponential relaxation via internal spin waves in
magnetic particles is quite convincing.

B. Exponential instabilities

In the case of pure bulk anisotropy �no random anisotropy
and other interactions causing noncollinearity of spins�, Eq.
�26� with Ai

�2�⇒0 is a system of uniform linear equations. In
general, m has a nontrivial quasiperiodic time dependence
defined by the bulk anisotropy, magnetic field, and the en-
ergy associated with m that is conserved in the absence of
the internal spin waves. Excitation of the latter reduces the
energy associated with m so that the total energy is con-
served. Mathematically, spin-wave instabilities in this case
are exponential divergences of the solution of a system of
linear differential equations with periodic coefficients. A
well-known example of such instabilities is parametric reso-
nance. In all cases instability requires elliptic or more com-
plicated precession of m. Simple circular precession around
the field h does not lead to exponential instabilities.

From the physical point of view, exponential SW insta-
bilities are similar to the Suhl exponential instabilities. The
difference resides mainly in the mathematical description.
The Suhl formalism considers spin waves above the true
ground state, so that it cannot be applied in situations of large
deviations of m from the energy minimum. The advantage of
the present method is that unstable spin waves are described
by a linear differential equation with constant coefficients
that can easily be solved.

In contrast, the present method using the frame related to
the particle’s global magnetization can be used for any de-
viations of m from the ground state. The price to pay is to
deal with differential equations with time-dependent coeffi-
cients that are difficult to solve analytically �see also discus-
sion in Ref. 19�. However, if m is initially oriented toward an
energy maximum or a saddle point so that it does not evolve
in time in the absence of spin waves, one obtains differential
equations for the deviations �i with constant coefficients that
can easily be solved showing exponential instabilities. In
fact, in this case one can just linearize Eq. �6� near a given
direction of m, instead of going through the formalism of
this section. Examples are considered below Eq. �7�.

IV. NUMERICAL RESULTS

A. Relaxation of the magnetization

Efficient magnetization reversal via the SW instability re-
quires a quasicontinuous SW spectrum, i.e., the existence of
many SW modes in the instability interval. For this, a strong
inequality opposite to Eq. �13� should be fulfilled, i.e., the
particle’s size and/or the anisotropy D should be large
enough. To illustrate the process, we have solved Eq. �6� for
magnetization switching using the C++-based package Mag-
netic Particle �© H. Kachkachi & L. Reynaud�.

For the model with uniaxial anisotropy with easy axis
along z, the calculations have been done for two different
particle shapes. One is a sphere of radius R=35 lattice spac-
ings, cut inside a 70�70�70 cube resulting in 171 712
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atomic spins. The other particle is a parallelepiped consisting
of 28�31�34=29 512 atomic spins. The idea behind
choosing all different �linear� sizes is to avoid degeneracy in
the energies of SW modes �see Eq. �11�� and ensure a
smoother density of states and thus facilitate SW conversion
processes. In both cases the initial state is collinear and a
very small surface anisotropy was added to create initial very
small deviations from collinearity that later exponentially
grow. The lattice structure is simple cubic and boundary
conditions are free �fbc�. The magnetic field is h=hex, with
h�2D that creates the energy maximum in the direction
opposite to h. The latter is the initial direction of the mag-
netization in part of the simulations. As stressed above, a
particle whose magnetization is oriented toward the energy
maximum cannot just rotate out of this orientation �in the
absence of a coupling to the environment� because of the
energy conservation.

The results shown in Fig. 2�a� for the spherical particle
and in Fig. 4�a� for the box-shaped particle are similar. One
can see a nearly full reversal via the longitudinal relaxation
since the transverse magnetization component m� remains
small at all times. In the middle of the switching process,
excited spin waves almost completely destroy the magneti-
zation m. Then the first-generation long-wavelength SWs of
high amplitude convert via nonlinear processes into all pos-
sible spin-wave modes and the system thermalizes. Since the
thermodynamics of classical spins is mainly determined by
short-wavelength modes of high energy, the energy conser-
vation requires that the amplitudes of these SWs be small.
This explains the almost full recovery of m after reversal.
The asymptotic disordering 1−m�0 corresponds to the final
temperature T following from the energy balance.

The short-time magnification in Fig. 2�b� shows an expo-
nential increase in 1−m due to the SW instability until the
first dip, followed by an incomplete recovery of m and its
further decrease. The same behavior was observed for other
particle shapes.

If the initial particle’s magnetization makes an angle with
the highest-energy direction, the particle’s dynamics is a
combination of a noncircular precession of m and relaxation
via SW processes, so that our numerical results show a more
complicated behavior. The closer is the initial orientation of
m to the energy minimum, the slower is the relaxation to-
ward it and the smaller is the decrease in m in the course of
relaxation. The results for the box-shaped particle with its
initial magnetization vector perpendicular to the highest-
energy direction are shown in Fig. 3�b�. One can see that the
transverse relaxation is extremely slow in this case so that a
prohibitively long computer time is needed to follow the
decay m�→0.

Figure 1 shows the magnetization reversal out of a
disappearing metastable state for the model with
uniaxial z anisotropy and oblique magnetic field applied
at the angle �=� /4 to the z axis. For h=D there is a disap-
pearing metastable minimum for the orientation of the
spins at �=3� /4 to the z axis. Indeed, the energy
E���=−D cos2 �− �h /	2�cos �− �h /	2�sin �, following from
Eqs. �1� and �2�, satisfies E����=E����=0 for h=D and
�=3� /4. Also one can check that for h=D one has
E����=0 at �=� /12 that is the energy minimum. Notice that

for simulations, a slightly higher value of h has been chosen
to let m precess away from the initial state with �=3� /4.
One can see that this precession is strongly noncircular and
the particle’s global magnetization m tends to return into the
initial state that would comply with the energy conservation
law for a single spin. However, due to the excitation of in-
ternal spin waves in the particle the energy associated with
m decreases so that the returning to the initial orientation is
incomplete. After a couple of cycles many exponentially un-
stable spin waves get excited and a faster relaxation of m
begins. Asymptotically m approaches the orientation close to
the energy minimum at �=� /12 up to thermal disordering.
The reduction in m increases exponentially at small times but
does not exceed 40% in the middle of relaxation in this case.

Figure 4 shows the results of our numerical simulations
for the magnetization switching in the random-anisotropy
model described by Eq. �3�. The particle is again parallelepi-
ped with fbc, consisting of 28�31�34=29 512 atomic
spins. One can see again a nearly full reversal which is, in
contrast to Fig. 2�b�, linear at short times. The simulation
results at short times are in a reasonable accord with the
analytical result in Eq. �41� that is shown by the dashed line.
Also shown in Fig. 4�a� is the asymptotic approach of the
thermal state with temperature T corresponding to the re-
leased Zeeman energy. Note that the reduction in m in the
middle of reversal is much stronger for the anticollinear ini-
tial state �Fig. 4�a�� than for the perpendicular initial state
�Fig. 4�b��, similarly to the case of the exponential instability.

As discussed in Sec. II, in smaller particles SW modes are
essentially discrete and SW conversion processes are
blocked by the impossibility to satisfy the energy conserva-
tion law. Even if one SW mode is generated as a result of
exponential or linear instability, it usually cannot be con-
verted into other modes. This leads to the spin-wave bottle-
neck in the relaxation process via internal spin waves. As an
example we consider the sc-lattice cubic particle with
Nx=Ny =Nz=5 �N=125� the three degenerate modes �1,0,0�,
�0,1,0�, and �0,0,1� are excited via the linear instability pro-
cess in the model with random anisotropy for the magnetic
fields in the vicinity of h /J=0.38 197, as follows from Eqs.
�10�, �8�, and �11�. In Fig. 5 obtained with DR /J=0.01 one
can see that at h /J=0.38 197 there is an essential reduction
in the initially saturated magnetization, although the relax-
ation is bottlenecked because second-generation spin waves
cannot be created. The evolution of m is not sinusoidal be-
cause three degenerate SW modes are excited with different
efficiencies, depending on the realization of the random an-
isotropy, so that each mode has its own conversion frequency

, mentioned below Eq. �12�. On the contrary, for the off-
resonance value h /J=0.37 there is no SW mode at resonance
with the false vacuum and deviations 1−m remain very
small.

For larger values of the random-anisotropy constant, the
particle’s SW spectrum becomes effectively continuous, in
accordance with the arguments at the end of Sec. II. In par-
ticular, for DR /J=0.1 there is no principal difference be-
tween the results for h /J=0.38 197 and h /J=0.37, and the
magnetization relaxes toward the ground state. However, this
relaxation is much slower than in really large particles
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considered above and there is a significant quasirandom de-
pendence of the relaxation rate on model parameters.

B. Evolution of the magnetic structure and Fourier spectrum

As mentioned in Sec. IV A, long-wavelength unstable
spin waves of the first generation are converted via nonlinear
SW processes into secondary spin waves of shorter wave-
lengths and the full cascade of such conversion processes
finally leads to the equilibrium with a nonzero temperature
following from the energy balance. To illustrate this, we cal-
culated magnetic structures and Fourier spectra at different
moments of time during relaxation of a box-shaped particle
with random uniaxial anisotropy shown in Fig. 6. To save

computer time, we have used a particle of a small size with
N=5�7�10=350 spins. In the field h /J=0.382 the insta-
bility condition �10� is satisfied for the modes �1,0,0� and
�0,0,2�, where we code wave vectors by n� in Eq. �11�.
Moreover, there is a second-generation pair of unstable spin
waves �0,0 ,1�+ �1,1 ,1� since 	0,0,1+	1,1,1=0.0119J that is
nearly at resonance with 	1,0,0=	0,0,2
0. As a result, one
observes a complete relaxation and thermalization for
DR /J=0.1.

For one of the realizations of the random anisotropy, mag-
netic structures at different moments of time in the middle x
plane �ix=3� are shown in Fig. 7. At the initial stage, a high-
amplitude long-wavelength excitation is generated. At the
end of the evolution, the energy migrates into excitations
with higher wave vectors and the magnetic states become
thermal.

To describe the evolution of the Fourier spectrum, it is
convenient to introduce
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DR/J = 0.01
prepared with all spins aligned

antiparallel to h = hez

Box-fbc particle N = 5×5×5 = 125

-(J/h)t

m

FIG. 5. �Color online� Time dependence of the magnetization
magnitude m for a cubic particle of 5�5�5=125 spins with ran-
dom anisotropy. For the resonant value of the field h spin waves are
generated out of the false vacuum �magnetization opposite to the
field� but they cannot be converted into other modes so that the
process is bottlenecked. For the nonresonant value of h spin waves
are practically not generated.
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FIG. 6. �Color online� Time dependence of the magnetization
component mz for the box-shaped particle of 5�7�10=350 spins
with random anisotropy, initially oriented opposite to the field
h /J=0.382.
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Fk � �
�

m�,k
2 �46�

as the overall measure of spin fluctuations at a particular k,
where

mk �
1

	N�
i

si f ix,kx
f iy,ky

f iz,kz
, �47�

i��ix , iy , iz�, and f i�,k�
are SW eigenfunctions for a box-

shaped crystal with cubic lattice structure and periodic
boundary conditions18

f i�,k�
=	 2

�1 + �k�,0�N�

cos��i� − 1/2�k�� �48�

and k� are defined by Eq. �11�. The definition of Fk does not
depend on the direction of the global magnetization m of Eq.
�5� and this is very convenient in our case. In particular, for
the collinear state all Fourier components with k�0 are zero
and one obtains m0=m and F0=m2.

In the course of relaxation in Figs. 2�a�, 3�a�, and 4�a�, as
well as Fig. 6 �not shown�, the magnetization is nearly de-
stroyed in the intermediate stage and thus F0 drops from 1 to
nearly zero and then increases again to nearly 1. To the con-
trary, Fk with k�0 increase from zero and asymptotically
reach nonzero values corresponding to the equilibrium spin
waves. Fk with k corresponding to SW instabilities and
around increase to large values as the unstable spin waves
are generated but then they decrease to their thermal equilib-
rium values. Fk with large k always remain small.

The function

Ēk � �J0 − Jk�Fk �49�

describes the distribution of spin-wave energy among differ-

ent SW modes, the peak at k=0 being removed. Ēk is more
convenient to represent spin waves over the whole Brillouin
zone than Fk since it gives a due weight to excitations with
large k that are not seen in Fk. When the system reaches

equilibrium, Ēk becomes on average independent of k. It is

convenient to represent Ēk as a function of J0−Jk, as is done
in Fig. 8.

The stages of the evolution of Ēk shown in Fig. 8 are the
following. At short times, Fig. 8�a�, the rising peak on the
left at �J0−Jk� /J�0.382 corresponds to the unstable spin
waves of the first generation. One can also see a smaller peak
to the right of the main peak that corresponds to one of the
second-generation SWs. After some time the excitation mi-
grates to other SW modes, the peaks become lower and then
disappear completely, and the equilibrium distribution is
eventually reached. This thermalization stage is shown in
Fig. 8�b�.

Let us consider now the thermal equilibrium state at the
end of the relaxation. The temperature in the final state can
be found from the condition that the Zeeman energy released
in the relaxation is converted into thermal energy. For clas-
sical systems, as is the case for our model, the energy per
degree of freedom is �1 /2�kBT. Each SW mode has two de-
grees of freedom, that is, the total energy in the mode is kBT.

The number if different SW modes are equal to the number
of spins in the particle. Thus the energy balance condition
per spin/mode has the form

kBT = 2g�BH � 2h �50�

since the initial orientation of the spins is opposite to the
field whereas the final orientation is parallel to it. At a given
temperature kBT�J0, the equilibrium magnetization of a
classical-spin system is given by25

meq�T� 
 1 −
kBT

h + J0
P� J0

h + J0
� , �51�

where P�z� is the so-called lattice Green’s function that de-
pends on the lattice structure and is explicitly given by
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FIG. 8. Fourier spectra at different times for the box-shaped
particle of 5�7�10=350 spins with random anisotropy, initially
oriented opposite to the field h /J=0.382. �a� Initial stage of the
instability: growth of the first-generation peak and the secondary
peak. �b� Spread of the excitation over all modes and
thermalization.
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P�z� =
1

N �
nx=0

Nx−1

�
ny=0

Ny−1

�
nz=0

Nz−1
1

1 − z�k
, �52�

where �k�Jk /J0 and k is given by Eq. �11�. For our finite-
size system the easiest way is to calculate P�z� by direct
summation. For the box particle 28�31�34 in Fig. 4 in the
field h /J=0.1 and thus h /J0=0.016 666 Eq. �52� yields
P�0.9836�=1.48 286. Then Eqs. �51� and �50� result in meq
=0.97 569 that is shown in Fig. 4�a� as thermal equilibrium.

V. DISCUSSION

We have shown that internal spin-wave processes in large
enough magnetic particles can lead to complete magnetiza-
tion reversal and thermalization. The role of thermal bath in
these processes is played by the magnetic particle itself. The
energy release in the course of the relaxation of the particle’s
global magnetization m toward the ground state is absorbed
by internal spin waves so that the total energy is conserved,
as long as there is no coupling to the environment.

The two main scenarios of magnetization reversal are
through exponential and linear SW instabilities. While the
former is the Suhl instability, described here within a more
general formalism that allows for large magnetization mo-
tions, the linear instability is difficult to pinpoint in the ex-
isting literature. Anyway, theoretical description of the linear
instability requires redefinition of the spin-wave vacuum by
using the frame related to the particle’s global magnetization
m that in general depends on time.

In both cases, the relaxation is fast at the beginning but
then slows down. These results are relevant to the study of
the dynamics of magnetoelectronic elements and, more gen-
erally, in the physics of unstable macroscopic states. In the
model with random anisotropy that can be solved analyti-
cally, relaxation at asymptotically large times is power law
rather than exponential. The reason is that the relaxation rate
becomes small as the direction of the particle’s magnetiza-
tion approaches the ground-state direction. For the random-
anisotropy model both longitudinal and transverse relaxation
rates are maximal for m pointing toward the energy maxi-
mum. It is clear that the majority of the magnetic nanopar-
ticles studied nowadays are shown to exhibit effective
uniaxial anisotropy. However, as their size is further reduced,
the on-site crystalline anisotropy may adopt a more disor-
dered distribution upon which the model of random aniso-
tropy may become of some relevance.

Estimations of relaxation rates via internal spin waves in
metallic Co made in Ref. 22 yield ��105–106 s−1. Com-
parison with the spin-phonon and other external rates, ob-
tained microscopically, is difficult since the latter are still
unreliable and should be modified by collective processes
such as phonon bottleneck26,27 and phonon superradiance.28

In most cases internal processes should dominate. One
should not forget, however, that the latter die out for nano-
particles that cannot accommodate spin waves. The phenom-
enological Landau-Lifshitz relaxation rate �LL=�h /� with
the damping constant � ranging between 10−1 and 10−3 is
typically much larger than microscopic rates that do not take
into account collective processes. One has to be careful,

however, since the � that is extracted from experiments may
contain a contribution from the SW processes.

Numerical simulations in this work have been done for a
classical-spin model without coupling to the environment.
The dynamical equations are Larmor equations for each
atomic spin precessing in the effective field created by the
other spins plus the magnetic and anisotropy fields. Including
the effect of the environment by a double vector-product
relaxation term introduced by Landau and Lifshitz8 is
straightforward. Furthermore, one can also include the finite-
temperature effect through a Langevin field, though with the
price that this makes the program much slower. It should be
stressed, however, that such a method of including the envi-
ronment is not fully reliable because it misses collective ef-
fects in the spin-lattice relaxation.
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APPENDIX: RANDOM ANISOTROPY: DYNAMICS IN THE
PRECESSING FRAME

Consider a model with HAi=0 and small random aniso-
tropy gJi that is the only source for the particle’s relaxation. In
the zeroth approximation m is simply precessing around the
magnetic field

�ṁ = �m � h� �A1�

and it is convenient to consider spin waves in the frame
related to m and defined by Eq. �28�. Equations �28� can be
solved for h resulting in

h = hxn − h	1 − x2e2. �A2�

Time derivatives of the basis vectors defined by Eq. �28� are
given by �using Eq. �A1��

�ṅ = �n � h� ,

�ė1 =
��ṅ � h�
h	1 − x2

=
��n � h� � h�

h	1 − x2
=

− nh + hx
	1 − x2

,

�ė2 =
�ṅ�n · h�
h	1 − x2

=
�n � h�x
	1 − x2

�A3�

and they can be projected on n, e1, and e2

�ṅ = h	1 − x2e1,

�ė1 = �n · �ė1�n + �e2 · �ė1�e2 = − h	1 − x2n − hxe2,

�ė2 = hxe1. �A4�
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Now the explicit time dependence has to be obtained. To this
end, it is convenient to choose the z axis along h, i.e.,
h=hez, then from Eq. �A1� follows

n�t� = xez − 	1 − x2 cos��ht�ex + 	1 − x2 sin��ht�ey ,

e1�t� = cos��ht�ey + sin��ht�ex,

e2�t� = − 	1 − x2ez − x cos��ht�ex + x sin��ht�ey , �A5�

where

�h = h/� . �A6�

One can project �i onto the time dependent n, e1, and e2
as

�i = �i0n + �i1e1 + �i2e2 �A7�

and thus

��̇i = ��̇i0n + ��̇i1e1 + ��̇i2e2 + �i0�ṅ + �i1�ė1 + �i2�ė2.

�A8�

Inserting this form into Eq. �26� with HAi=0 and Ai
�2�

dropped and projecting onto the three basis vectors one ob-
tains the equation

��̇i0 − �i1h	1 − x2 = n · Ai
�1� �A9�

as well as

��̇i1 + �i0h	1 − x2 + hx�i2 = e1 · �m � 2gJim� + e1 · Ai
�1�

�A10�

together with

��̇i2 − hx�i1 = e2 · �m � 2gJim� + e2 · Ai
�1�. �A11�

In the rhs of Eq. �A9� one has

n · Ai
�1� = n · ��i � h� = �i · �h � n� . �A12�

Then with the help of the first of Eqs. �28� one obtains

�̇i0 = 0. �A13�

Expressions in the rhs of other equations can be processed as
follows

e1 · �m � gJim� = m2e1 · �n � �e1�e1gJin� + e2�e2gJin���

= m2e1 · �e2�e1gJin� − e1�e2gJin��

= − m2�e2gJin� �A14�

and, similarly,

e2 · �m � gJim� = m2�e1gJin� . �A15�

From Eq. �27� with HAi=0 one obtains

Ai
�1� = ��i � �h + J0m�� + �m � �

j

Jij� j�
= ���i0n + �i1e1 + �i2e2� � �h + J0m��

+ �m � �
j

Jij�� j0n + � j1e1 + � j2e2��
= �i0�n � h� + �i1��e1 � h� + J0m�e1 � n��

+ �i2��e2 � h� + J0m�e2 � n��

+ m�
j

Jij�� j1�n � e1� + � j2�n � e2�� . �A16�

With the help of Eqs. �28� and �A2� this becomes

Ai
�1� = �i0h	1 − x2e1 + �i1�− hxe2 − h	1 − x2n − J0me2�

+ �i2�hxe1 + J0me1� + m�
j

Jij�� j1e2 − � j2e1� .

�A17�

The components of this vector are

Ai1
�1� = hx�i2 + m�

j

�J0�ij − Jij�� j2 + h	1 − x2�i0,

Ai2
�1� = − hx�i1 − m�

j

�J0�ij − Jij�� j1. �A18�

Now Eqs. �A10� and �A11� after simplification become

��̇i1 = m�
j

�J0�ij − Jij�� j2 − 2m2�e2gJin� ,

��̇i2 = − m�
j

�J0�ij − Jij�� j1 + 2m2�e1gJin� .

This is the system of equations describing the generation of
internal spin waves in a magnetic particle.

It is convenient to introduce the variables

�i,� = �i1 � i�i2, e� � e1 � ie2 �A19�

so that

e1 =
1

2
�e− + e+�, e2 =

i

2
�e− − e+� ,

�i1 =
1

2
��i,− + �i,+�, �i2 =

i

2
��i,− − �i,+�

and

e1�i1 + e2�i2 = Re�e−�i,+� ,

e1�i2 − e2�i1 = Im�e−�i,+� ,

e1�i2 + e2�i1 = Im�e+�i,+� . �A20�

Then one obtains the equation

��̇i,+ = − im�
j

�J0�ij − Jij�� j,+ + 2im2�e+gJin� �A21�

and the conjugate equation for �̇i,−.
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For a box-shaped particle one can rewrite this equation in
terms of the discrete Fourier components

�k = �
i

eik·ri�i, �i =
1

N�
k

e−ik·ri�k, �A22�

etc., as

��̇k,+ = − i	ex,k�k,+ + 2im2�e+gJkn� , �A23�

where

	ex,k = m�J0 − Jk� . �A24�

The density of pure-exchange spin-wave states is given by

�ex��� =
1

N�
k

���ex,k − �� , �A25�

where ��ex,k=	ex,k and N=NxNyNz. It satisfies �d�����=1.
In the continuous approximation for small wave vectors for
the sc lattice one has

	ex,k 
 mJ�ak�2. �A26�

For a particle of a box shape with fbc for ���J0 one obtains

�ex��� 
 a3� � �
0

� dkxdkydkz

�3 ���ex,k − ��

= �
4�a3

8�3 �
0

�

k2dk��	ex,k − 	�

=
�

�2��2	 	

m3J3 . �A27�

Equation �A23� has the solution

�k,+�t� = �k,+�0�e−i�ex,kt + 2m2 i

�
�

0

t

dt� � e−i�ex,k�t−t��

��e+�t��gJkn�t��� , �A28�

where ��ex,k=	ex,k. The first term of the solution takes into
account spin waves already available in the particle, such as
thermal spin waves. The second term describes spin waves
generated by the particle’s precession via the random aniso-
tropy. Note that, according to Eq. �A13�, longitudinal fluc-
tuations �i0 do not have any dynamics in the linear approxi-
mation.

The next step is to substitute the solution for �k,+�t� into
the relaxation term R in the equation for m, see Eq. �21�.
Keeping terms of order �g in Eq. �23� with HAi=0 one
obtains

R = 2m
1

N�
i

��n � gJi�i� + ��i � gJin�� . �A29�

For R� of Eq. �33�, using transformations in Eq. �A14� one
obtains

R� = 2m
1

N�
i

n · ��i � gJin�

= − 2m
1

N�
i

�i · �n � gJin�

= − 2m
1

N�
i

�i · �n � �e1�e1gJin� + e2�e2gJin���

= − 2m
1

N�
i

�i · �e2�e1gJin� − e1�e2gJin��

= 2m
1

N�
i

��e2gJin��i1 − �e1gJin��i2� . �A30�

Finally, with the help of Eq. �A20�

R� = − 2m Im� 1

N�
i

�e−gJin��i,+� . �A31�

Further one obtains

R2 = e2 · R

= 2m
1

N�
i

e2 · ��n � gJi�i� + ��i � gJin��

= 2m
1

N�
i

��e1gJi�i� − �i · �e2 � gJin��

= 2m
1

N�
i

��e1gJi�i� − �i · �e1�ngJin� − n�e1gJin���

= 2m
1

N�
i

��e2gJie1��i1 + �e2gJie2��i2 − �i1�ngJin�� ,

�A32�

where we have dropped all the terms with �i0 since they are
frozen in and disappear after the averaging over the random
anisotropy. This can be rewritten as

R2 = 2m Re� 1

N�
i

��e1gJie−� − �ngJin���i,+� . �A33�

In the Fourier representation R� and R2�R� are given by

R� = − 2m Im� 1

N2�
k

�e−gJ−kn��k,+� ,

R� = 2m Re� 1

N2�
k

� ��e1gJ−ke−� − �ngJ−kn���k,+� .

�A34�

Note the relations
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gJk
� = gJ−k, �k,�

� = �−k,�. �A35�

Using Eq. �A28� yields

R� = − 2m3 Re� 1

N2�
k

1

�
�

0

t

dt�e−i�ex,k�t−t��

��e−�t�gJ−kn�t���e+�t��gJkn�t���� . �A36�

Random anisotropy has the form of Eq. �4�, so that

gk,�� = DR�
i

eik·riui�ui�. �A37�

Using the formula for the ensemble averaging on a lattice
site i

��u�u� −
1

3
�����u�u� −

1

3
�����

= �u�u�u�u�� +
1

9
������

+ ������� + ������ + ��������1 − ������
1

15
+ �����

1

5

+
1

9
������ =

1

15
������� + ������ + ������� +

1

9
������,

�A38�

whereas the correlator of two g on different lattice sites is
zero, one obtains the important formula

1

N
��agJkb��cgJ−kd��

=
DR

2

15
��a · b��c · d� + �a · c��b · d� + �a · d��b · c��

+
DR

2

9
�a · b��c · d� . �A39�

In fact, the terms with �a ·b��c ·d� vanish in the expressions
below. With the help of Eq. �A39� one obtains

R� = − 4m3DR
2

15
Re� 1

N�
k

1

�
�

0

t

dt�e−i�ex,k�t−t�� � ��e−�t� · e+�t���

��n�t� · n�t��� + �n�t� · e+�t����e−�t� · n�t����� . �A40�

After computer algebra using Eqs. �A5� and �A19� one
obtains

�e−�t� · e+�t����n�t� · n�t��� + �n�t� · e+�t����e−�t� · n�t���

= 3x2�1 − x2� +
1

2
�1 − x�2�1 + 2x�2ei�h�t−t��

+
1

2
�1 + x�2�1 − 2x�2e−i�h�t−t��

+
1

2
�1 − x�2�1 − x2�e2i�h�t−t��

+
1

2
�1 + x�2�1 − x2�e−2i�h�t−t��, �A41�

where x is given by Eq. �29� and �h by Eq. �A6�. Since in
Eq. �A40� �ex,k�0, here one should keep only the resonant
terms with ei�h�t−t�� and e2i�h�t−t�� that satisfy the energy con-
servation and cause transitions. One obtains

R� = −
4m3DR

2

15�

1

N�
k
�1

2
�1 − x�2�1 + 2x�2����ex,k − �h�

+
1

2
�1 − x�2�1 − x2�����ex,k − 2�h��

= −
2m3DR

2

15�
�1 − x�2��1 + 2x�2��ex��h�

+ �1 − x2���ex�2�h�� . �A42�

With the help of Eq. �A27� one obtains

R� = −
2m3/2

15�

DR
2

J
	h

J
���x� , �A43�

where ���x� is given by Eq. �37�.
For R2 from Eqs. �A34� and �A28� one obtains

R� = 4m3 Re� 1

N2�
k

i

�
�

0

t

dt�e−i�ex,k�t−t��

���e1�t�gJ−ke−�t�� − �n�t�gJ−kn�t��� � �e+�t��gJkn�t����
=

4m3DR
2

15
Re� 1

N�
k

i

�
�

0

t

dt�e−i�ex,k�t−t�� � ��e1�t� · e+�t���

��e−�t� · n�t��� + �e1�t� · n�t����e−�t� · e+�t���

− 2�n�t� · e+�t����n�t� · n�t����� . �A44�

Computer algebra yields
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i
	1 − x2

���e1�t� · e+�t����e−�t� · n�t��� + �e1�t� · n�t���

��e−�t� · e+�t��� − 2�n�t� · e+�t����n�t� · n�t�����

= − 3x3 −
1

2
�1 − x��1 + 2x�2ei�h�t−t��

+
1

2
�1 + x��1 − 2x�2e−i�h�t−t��

−
1

2
�1 − x�2�2 + x�e2i�h�t−t��

+
1

2
�1 + x�2�2 − x�e−2i�h�t−t��. �A45�

This results in

R� = −
2m3DR

2

15�
	1 − x2�1 − x����1 + 2x�2�ex��h�

��1 − x��2 + x��ex�2�h�� . �A46�

Finally, using Eq. �A27� again, this expression can be
brought into the form

R� = −
m3/2

5�

DR
2

J
	h

J
	1 − x2���x� , �A47�

where ���x� is given by Eq. �38�. Finally, with

���x� = −
1

�
R��x�, ���x� = −

1

�

R��x�
	1 − x2

�A48�

one obtains Eq. �34�.
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